Flexural Strengthening of Reinforced Concrete Beams with Variable Compressive Strength Using Near-Surface Mounted Carbon-Fiber-Reinforced Polymer Strips [NSM-CFRP]

نویسندگان

چکیده

An experimental and analytical investigation was conducted on reinforced concrete (RC) beams strengthened in flexure using the near-surface mounted carbon-fiber-reinforced polymers (NSM-CFRPs) technique. A total of 11 full-scale RC rectangular were cast tested under a monotonic three-point bending test, up to failure. The main test variables adopted this study compressive strength (high, medium, low), number CFRP strips, strip length. results indicated that use NSM-CFRPs strips different configurations efficiently increased load-carrying capacity beams, which all these exhibited higher moment resistance than corresponding un-strengthened beam. Results also showed strengthening schemes successful increasing flexural specimens tested. Such increases ranged between 10.36% 52.28%. Notably, significant improvement ultimate load ratio observed with having low 17-MPa, then followed by medium (32-MPa), finally high (47-MPa). NSM technique reduced occurrence possibility de-bonding failure mode. Furthermore, compared theoretical predictions ACI 440.2R17 guidelines good agreement results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexural Cracks in Fiber-Reinforced Concrete Beams with Fiber-Reinforced Polymer Reinforcing Bars

Fiber-reinforced polymer (FRP) reinforcing bars have aTtracted considerable 0llellli0l1 for applications where corrosion of steel reinforcement is problemaric. Due 10 rhe generally low elastic modulus and poor bond clwracreristics of FRP as coil/pared 10 steel reinforcing bars, the use of FRP results in IGI:i?er crack widlhs under senJice loads. Fiber-reinforced concrete (FRe) is proposed for u...

متن کامل

Flexural Strengthening of Deficient Reinforced Concrete Beams with Post-Tensioned Carbon Composites using Finite Element Modelling

The application of external post-tensioned steel bars as an effective way to strengthen an existing bridge has been so far used in many different countries. In recent decades, however, they have been replaced by bars made from Carbon Fiber Reinforced Polymer (CFRP), as a material with high tensile strength and corrosion resistance, to address several concerns with steel bars such as their appli...

متن کامل

Shear strengthening of reinforced concrete beams with CFRP

The current paper reviews existing design guidelines for strengthening beams in shear with carbon fibre reinforced polymer (CFRP) sheets and proposes a modification to Concrete Society Technical Report TR55. It goes on to present the results of an experimental programme which evaluated the contribution of CFRP sheets towards the shear strength of continuous reinforced concrete (RC) beams. A tot...

متن کامل

Flexural Testing of High Strength Reinforced Concrete Beams Strengthened with CFRP Sheets

The objective of this study is to investigate the effectiveness of externally bonded CFRP sheets to increase the flexural strength of reinforced high strength concrete (HSC) beams. Four-point bending flexural tests to complete failure on six concrete beams, strengthened with different layouts of CFRP sheets were conducted. Three-dimensional nonlinear finite element (FE) models were adopted by A...

متن کامل

Strengthening of Corrosion-Damaged Reinforced Concrete Beams with Glass Fiber Reinforced Polymer Laminates

Problem statement: This study showed the results of an experimental investigation on the strengthening of corrosion damaged reinforced concrete beams with unidirectional cloth glass fiber reinforced polymer (UDCGFRP) laminates. Approach: All the beam specimens 150×250×3000 mm were cast and tested for the present investigation. One beam specimen was neither corroded nor strengthened to serve as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fibers

سال: 2022

ISSN: ['2079-6439']

DOI: https://doi.org/10.3390/fib10100086